

Development of Corticostriatal Connectivity During Adolescence Supports A Dorsal-Ventral Gradient of the Human Striatum

Samuel Klein, MA, Paul F. Collins, PhD, Vanessa Alschuler, Peter Grund, Monica Luciana, PhD University of Minnesota-Twin Cities, Department of Psychology

Background

- Adolescents undergo pronounced changes in neurodevelopment, including increased development of striatal pathways linked to reward-driven behaviors¹.
- Seminal work in animal neuroscience suggests that ventral (VS) and dorsal (DS) subdivisions of the striatum are topographically organized: the VS is connected to brain areas involved with reward processing, while the DS is connected to areas implicated in higher-order cognition².
- The functional development of this topographic organization of the striatum, and how it changes during adolescence, is poorly understood.
- The present work examined longitudinal changes in resting-state functional connectivity (FC) of DS and VS to address this gap.

Participants & Methods

A. Longitudinal Design

Participants aged 11.6 – 25.70 underwent 6-minute long resting fMRI scans. Participants were followed every 2-3 years for four assessment waves (8-years total), yielding 339 data points. *Participant Demographics*

Results A. Striatal Connectivity at each Wave **vIPFC vIPFC** sgCG sgCG mOFC mOFC **Baseline** Wave 2 latOFC latOFC dmPFC dmPFC -5 dIPFC dIPFC cdCG cdCG antcing antcing Dorsal Dorsal Ventral Ventral vIPFCvIPFC sgCGsgCG mOFC mOFC Wave 3 Wave 4 latOFClatOFC dmPFC dmPFC dIPFC dIPFC cdCG cdCG

Resting Data	Baseline	T2	T3	T4		
<u>Itesting Data</u>	(n = 116)	(n = 39)	(n = 100)	(n = 84)		
Age Range	11.63 - 25.70	14.40 - 26.98	15.84 - 29.42	18.04 -32.28		
Age	18.51 (3.85)	19.80 (3.16)	21.89 (3.92)	23.46 (3.77)		
Female (n %)	92 (54.76%)	45 (56.96%)	62 (53.0 %)	56 (54.36%)		
Ethnicity (%)						
White	89.7 %	95.7 %	90.2 %	91.0 %		
Black	1.1 %	0 %	1.1 %	1.3 %		
Hispanic	1.1 %	2.2 %	2.2 %	2.6 %		
Asian	2.2 %	2.2 %	2.2 %	2.6 %		
Other [†]	5.4 %	0 %	4.3 %	2.6 %		
Parental Education	15.95 (2.55)	16.56 (2.49)	16.27 (2.84)	15.97 (2.36)		
Average FD	0.128 (.05)	0.133 (.03)	0.122 (.04)	0.120 (.06)		

Note. Baseline denotes year 0 of present study. T2 denotes study year 2, T3 denotes study year 4, and T4 denotes study year 6. All values are presented using Mean (Standard Deviation [SD]) unless otherwise noted. † Includes individuals with multiple racial identities

B. MRI Processing

fMRI data was denoised using ICA-AROMA, and global signal regression was applied to filter out white matter and CSF. We also applied high pass temporal filtering (100s cutoff); registered participants to MNI-152 2mm space via MPRAGE scan transforms. *Seed ROIs Target ROIs*

• Across each wave, VS showed strong positive connectivity with reward areas mOFC, sgCG, as well as latOFC. In contrast, VS showed weak connectivity with areas implicated in higher order processing (e.g, **dlPFC**, **vlPFC**).

antcing

DS demonstrated the inverse connectivity pattern, exhibiting strong positive connectivity with **dIPFC**, **vIPFC**, **dmPFC**, **and cdCG**, and weak connectivity with reward areas (e.g., mOFC, sgCG).

Ventral Striatum

The ventral striatum seed consisted of the nucleus accumbens (Nac), and ventral aspects of the putamen **(VS; blue).**

<u>Dorsal Striatum</u>

The dorsal striatum consisted of dorsal spects of the caudate nucleus and putamen (**DS; green**).

C. rsMRI Connectivity Maps

We employed a seed-based approach. Seed (i.e., VS and DS) and target ROIs were selected from the Brainnetome Atlas³. Target ROIs were selected using specific areas of prefrontal cortex shown to anatomically project to VS and DS in both humans, and nonhuman primates².

Connectivity values were extracted using dual regression in FSL⁴. Data sets were included if they had average framewise displacement of < .50 mm and at least 4 minutes of data with framewise displacement of < .20 mm in each fMRI volume.

Cingulate ROIs

Subgenual cingulate (sgCG; yellow and red), anterior cingulate (antcing; green), caudal dorsal cingulate (cdCG; blue).

Prefrontal ROIs

Medial orbitofrontal cortex (mOFC; red); lateral aspects of OFC (latOFC; yellow); dorsal medial prefrontal (dmPFC; tan); ventrolateral PFC (vlPFC; pink. dorsolateral prefrontal (dlPFC; purple).

dll	PFC	vL	PFC	mC	DFC	sg	CG		dlł	PFC	vLl	PFC	mC	DFC	sg(CG
Beta	р	Beta	р	Beta	р	Beta	р	Component	Beta	р	Beta	р	Beta	р	Beta	р
3.1	< 0.001	4.5	< 0.001	-2.3	< 0.001	-0.77	0.005	Model	-1.0	< 0.001	-1.4	< 0.001	5.3	< 0.001	6.1	< 0.001
								Intercept								
	< 0.001		< 0.001		0.14		0.15	Age Smooth		0.046		< 0.001		< 0.001		< 0.001
	< 0.001		0.6		< 0.001		< 0.001	Random Int.		< 0.001		< 0.001		< 0.001		< 0.001
								Smooth								
3.28		4.89		4.86		3.82		RMSE	2.19		2.55		6.17		5.45	
5.03		7.51		7.45		5.86		Sigma	3.37		3.91		9.47		8.37	
0.435		0.051		0.313		0.317		Deviance	0.411		0.490		0.491		0.512	
								Exp.								
339		339		339		339		No. Obs.	339		339		339		339	
	<u>dll</u> <i>Beta</i> 3.1 3.28 5.03 0.435 339	dlPFC Beta p 3.1 <0.001	dlPFCvLlBetapBeta3.1<0.001	dlPFCvLPFCBetapBetap 3.1 <0.001	dlPFCvLPFCmCBetapBetapBeta 3.1 <0.001	dlPFCvLPFCmOFCBetapBetap 3.1 <0.001	dIPFCvLPFCmOFCsgBetapBetapBeta 3.1 <0.001	dlPFCvLPFCmOFCsgCGBetapBetapBetap 3.1 <0.001	dIPFC $vLPFC$ $mOFC$ $sgCG$ BetapBetapBetap 3.1 <0.001 4.5 <0.001 -2.3 <0.001 -0.77 0.005 3.1 <0.001 4.5 <0.001 -2.3 <0.001 -0.77 0.005 Model <0.001 <0.001 <0.001 0.14 0.15 Age Smooth <0.001 0.6 <0.001 <0.001 Age Smooth 3.28 4.89 4.86 3.82 Sigma 5.03 7.51 7.45 5.86 Sigma 0.435 0.051 0.313 0.317 Deviance 339 339 339 339 339 $No. Obs.$	dlPFC $vLPFC$ $mOFC$ $sgCG$ dlP BetapBetapBetapComponentBeta 3.1 <0.001 4.5 <0.001 -2.3 <0.001 -0.77 0.005 Model -1.0 <1.0 <0.001 <0.001 <0.14 <0.15 Model -1.0 <0.001 <0.6 <0.001 <0.15 Age Smooth <0.001 0.6 <0.001 <0.001 Random Int. 3.28 4.89 4.86 3.82 RMSE 5.03 7.51 7.45 5.86 Sigma 0.435 0.051 0.313 0.317 Deviance 0.411 $Exp.$ 339 339 339 339 339 339	dlPFCvLPFCmOFCsgCG $Component$ $Beta$ p Beta p Beta p Beta p Model -1.0 <0.001 3.1 <0.001 4.5 <0.001 -2.3 <0.001 -0.77 0.005 Model -1.0 <0.001 <0.001 <0.001 0.14 0.15 $Age Smooth$ -1.0 <0.046 <0.001 0.6 <0.001 <0.001 $Age Smooth$ <0.001 3.28 4.89 4.86 3.82 RMSE 2.19 5.03 7.51 7.45 5.86 Sigma 3.37 0.435 0.051 0.313 0.317 Deviance 0.411 $Sage$ 339 339 339 339 $No. Obs.$ 339	dlPFCvLPFCmOFCsgCG $dlPFC$ vLPBetapBetapBetapModelp3.1<0.001	dlPFCvLPFCmOFCsgCG $dlPFC$ $ggCG$ $dlPFC$ $vLPFC$ $vLPFC$ BetapBetapBetapBetapBetap3.1<0.001	dlPFC $vLPFC$ $mOFC$ $sgCG$ $dlPFC$ $sgCG$ $dlPFC$ $vLPFC$ mC $Beta$ p <	$d \parallel PE'$ $v \perp PE'$ $m OFC$ $sgCf$ $d \parallel PE'$ $v \perp PE'$ $v \perp PC$ $m OFC$ $Beta$ p <th< td=""><td>$d \parallel P E$$v L P E$$m O E$$s g C$$d \parallel P E$$v L P E$$v L P E$$m O E$$s g C$BetapGuina<th< td=""></th<></td></th<>	$d \parallel P E$ $v L P E$ $m O E$ $s g C$ $d \parallel P E$ $v L P E$ $v L P E$ $m O E$ $s g C$ BetapGuina <th< td=""></th<>

General additive mixture models (GAMS) revealed that VS connectivity with ROIs implicated in reward processing (e.g., **mOFC**) steadily increased from childhood to adulthood, whereas VS FC between ROIs associated with higher-order cognition (e.g.,**dIPFC)** steadily decreased over this same period.

• In contrast, DS connectivity with areas implicated in higher order cognition increased

more rapidly during adolescence, stabilizing in early adulthood; DS connectivity with reward ROIs did not change as a function of development.

Discussion

- Our findings suggest that the development of frontostriatal connectivity follows a ventral-to-dorsal gradient where VS and DS pathways exhibit functional segregation that increases during adolescence.
- Both VS and DS functional connectivity increased with the anterior cingulate, consistent with a conceptualization of this area as a connectional hub linking aspects of reward and cognitive control.
- Taken together, these results concur with a ventral-dorsal divide of striatal connectivity, aligning anatomically defined striatal projections in nonhuman primates to functional connectivity derived using human neuroimaging.
- Future work will examine the functional and personality correlates of striatal connectivity changes during adolescence.

References

- 1. Porter, J.N, et al. (2015). Developmental Cog. Neuroscience
- 2. Haber, SN (2016) Dialogues in Clin. Neuroscience
- 3. Fan, L., et al. (2016). Cerebral Cortex.
- 4. Jenkinson, M., et al. (2012). Neuroimage

This work was supported by NIDA grants R01DA017843 and R01AA020033 awarded by the National Institute on Drug Abuse and the National Institute on Drug Abuse and Alcoholism to M. Luciana. SK is supported by T32DA050560 awarded by the National Institute on Drug Abuse. MRI Scans were conducted at the Center for Magnetic Resonance Resonance Research, supported by 1S100D017974-01 "High Performance Connectome Upgrade for Human 3T MR Scanner"